Fisher, FDA Aim to Advance Safety of Cardiac Medical Devices

news story imageUniversity of Maryland Fischell Department of Bioengineering professor and chair John Fisher is working with the U.S. Food and Drug Administration (FDA) to undertake regulatory research into emerging cardiac electrophysiology medical device technologies and human-induced pluripotent stem cells (hiPSCs) to assess device safety and efficacy.

In recent years, the use of cardiac electrophysiology medical devices – Cardiac Resynchronization Therapy (CRT), Implantable Cardioverter Defibrillator (ICD) and Cardiac Contractility Modulation (CCM) – to treat diseased heart tissue during heart failure has increased. Such technologies have proven critical to reducing mortality and improving patient quality of life. Before these technologies can be used in patients, preclinical bench testing – including large- and small-animal testing strategies – serves a critical role in advancing understanding of device mechanisms and safety. Consequently, novel human-based preclinical models are needed to reduce the burden on animal testing and clinical trials, and hiPSCs have been heralded as a potential solution. To usher this technology into the regulatory setting, the scientific community needs to learn more about 3D-printed culture strategies and identify best practices for the robust generation of such tissues.

Drs. Blinova and FeasterThe Fisher Lab is collaborating with Ksenia Blinova, assistant director, and T. K. Feaster, staff fellow, of the Division of Biomedical Physics in the Office of Science and Engineering Labs in the FDA’s Center for Devices and Radiological Health, to establish standardized methods for evaluating cardiac electrophysiology medical devices in human cells at the bench. The research trio is pursuing this work as a National Science Foundation (NSF) Scholars-in-Residence project. They aim to develop new knowledge and testing tools to further timely predictivity of these technologies.

“We have all witnessed remarkable advances in cell adhesion centrifugation (CAC) and hiPSC technology,” said Fisher. “Although useful, the potential for CAC to generate 3D-printed human heart models warrants further investigation. With support from the NSF, the knowledge gained from the UMD-FDA collaboration can help facilitate the development of such models to accelerate and inform the regulatory review process.”

“This collaborative research project is intended to help fill a gap in knowledge and test methods that has become increasingly important in recent years, given the rising level of activity towards cardiac electrophysiology device-based therapy,” said Drs. Blinova and Feaster. “We are very excited to be working together to develop innovative technological approaches with the potential to improve public health.”

 The NSF – through its Directorate for Engineering, the Directorate of Computer and Information Science and Engineering Division of Computer and Network Systems, and the Directorate for Mathematical and Physical Sciences Division of Materials Research – along with the FDA –  through its Center for Devices and Radiological Health (CDRH) – have established the NSF/FDA Scholar-in-Residence Program at FDA. This program comprises an interagency partnership for the investigation of scientific and engineering issues concerning emerging trends in medical device technology. This partnership is designed to enable investigators in science, engineering, and computer science to develop research collaborations within the intramural research environment at the FDA.

For more information about this project and the NSF/FDA SIR program, contact OSEL_CDRH@fda.hhs.gov.

Published July 30, 2021

UMD Bioengineers Take New Approach to Engineering Heart Tissue

 

 

news story imageBIOE Professor Xiaoming (Shawn) He

University of Maryland professor Xiaoming (Shawn) He and fellow Fischell Department of Bioengineering (BIOE) researchers developed a new strategy to improve engineered heart tissues and one day advance overall understanding of heart disease.

According to the Centers for Disease Control and Prevention, heart disease remains the leading cause of death for both men and women in the United States. A major reason for this is that the human heart has very limited capacity to regenerate cardiomyocytes – the contractile cells of the cardiac muscle – when these cells become damaged. This damage commonly occurs due to ischemia – a reduction of blood flow to the heart, most often resulting from buildup or a blockage in the arteries.

Stem cell therapy is widely considered a promising strategy for treating heart disease. Given the significant ethical concerns associated with human embryonic stem cells, scientists look instead to use what are functionally embryonic stem cell-like cells – called human induced pluripotent stem cells (iPSCs) – to generate cardiomyocytes.

The science behind the process of tapping human iPSCs in this way is both fascinating and complex. For example, as an alternative to using human embryonic stem cells, bioengineers can take fibroblasts – the most common type of cell found in connective tissue – from a patient’s skin. They then “reprogram” these cells into iPSCs to convert – or differentiate – them into cardiomyocytes. To do this, historically, scientists have harnessed the power of viruses – such as adenoviruses – to transfer the genes they need into the harvested skin cells through the process of transduction. In this way, scientists can essentially “recode” skin cells to become cardiac muscle cells.

Unfortunately, the process poses many challenges. For one, the use of a virus or viral vector raises health concerns because of the potential for the virus to infect unintended cells in the human body. Even when scientists don’t use a virus in the reprogramming process, they face an additional hurdle. Believe it or not, iPSCs have the ability to transform into virtually any type of cell in the human body; this means that a human iPSC intended to be a cardiac muscle cell might become skin, hair, or bone instead.

Put simply: if the aim is to engineer cardiac muscle tissue, there is no room for error. A batch of human iPSCs intended for use in the heart simply cannot include an errant skin, hair, or bone cell.

But, the process of differentiating cells into cardiomyocytes can take time – as many as two weeks or more using traditional methods. In order to shorten the time frame and increase the yield of human cardiomyocytes, engineers often use 3D cell cultures rather than the conventional 2D approach. Even more, they use rho-kinase inhibitors – better known as ROCK inhibitors – to improve the survival of 3D-cultured human iPSCs before differentiating them into cardiomyocytes.

For years, engineers have accepted 10μM as the standard concentration of ROCK inhibitors for use in this process.

But years of hard work – and a little bit of luck – led Fischell Department of Bioengineering Professor Xiaoming (Shawn) He and a team of researchers to an important discovery. Their findings were published in Bioactive Materials.

He and his team found that the ROCK inhibitor commonly used in 3D cultures of human iPSCs contributed extensively to their heterogeneous differentiation. In other words, the ROCK inhibitor improved both the survival and yield of human iPSCs, but at a quality cost: the yields always included unintended cells, mixed in with cardiac muscle cells after cardiac differentiation.

“When put in 3D culture, human iPSCs easily undergo a type of cell death known as apoptosis, which can be minimized by adding 10μM ROCK inhibitor,” He said. “However, our work shows that this high concentration of ROCK inhibitor primes human iPSCs into not only the mesoderm for cardiac differentiation but also the other two germ layers –ectoderm and endoderm – for skin, hair, or bone differentiation, even before initiating cardiac differentiation.”

He and his team found that by reducing the concentration of the ROCK inhibitor to 1μM, they could dramatically improve the quality of human iPSC differentiation into cardiomyocytes. In fact, with this revised concentration, the team produced cardiac muscle cells with a beating efficiency of 95 percent in just a week, compared with when they used 10μM of the ROCK inhibitor; in the latter scenario, their yield of cardiomyocytes achieved a beating efficiency of under 50 percent in two weeks’ time. Even more, in the 1μM scenario, He’s team was able to synchronize the beating of their cardiomyocytes, creating a cardiac cell network – a cardiac spheroid – that beats at the same rate (~1 Hz) as that of the human heart. And, they did so with human iPSCs reprogrammed by a non-virus method.

“This paves the way toward producing a large number of highly pure and synchronized patient-specific cardiomyocytes for clinical use, with minimized concern on unintended tissue growth, arrhythmia, or viral infection,” He said.

Moving forward, He and his team hope to tackle the challenge of increasing their yield of 3D-cultured human iPSCs. Their work could help point to new techniques for large-scale production of human iPSCs-derived cardiomyocytes for use in engineering 3D cardiac constructs. Examples include bioprinting human hearts with therapeutic applications for heart attacks, heart transplantation, and high-fidelity drug screening of cardiotoxicity. The team’s work could also advance understanding of deadly heart diseases.

BIOE postdoctoral researcher Bin Jiang served as first author on the paper. In addition to Xiaoming (Shawn) He, BIOE postdoctoral researcher Wenquan Ou, Ph.D. students James Shamul and Samantha Stewart, visiting scholar Hao Chen, alumna Sarah Van Belleghem (Ph.D. ’21) and BIOE chair John P. Fisher also contributed to the paper, along with Zhengou Liu, M.D., Ph.D. of the University of Missouri’s Division of Cardiovascular Medicine.

Along with this work, He’s research group also develops novel strategies to bank human cells, tissues, and organs. Recently, they developed a novel natural sand-based technology to greatly improve the quality and yield of banking human iPSCs. This work is also published in Bioactive Materials.

In addition to his appointment as BIOE professor, He also holds affiliations with the UMD Marlene and Stewart Greenebaum Comprehensive Cancer Center and the UMD Robert E. Fischell Institute for Biomedical Devices.

Published February 11, 2022